Difference between revisions of "Condensate"
From Living Building Science
Aschilling8 (talk | contribs) |
Aschilling8 (talk | contribs) |
||
Line 1: | Line 1: | ||
− | + | ||
− | + | ||
− | |||
== Introduction == | == Introduction == | ||
The [https://livingbuilding.gatech.edu/ Kendeda Building] has many intricacies making it the sustainable building it is today. Seven "Petals" can describe the overall workings and goals of the Kendeda building, the [http://livingbuilding.gatech.edu/node/320 Place], [https://livingbuilding.gatech.edu/water-petal Water], [http://livingbuilding.gatech.edu/node/323 Energy], [http://livingbuilding.gatech.edu/node/324 Health & Happiness], [http://livingbuilding.gatech.edu/node/325 Materials], [http://livingbuilding.gatech.edu/node/326 Equity], and [http://livingbuilding.gatech.edu/node/327 Beauty] petals. The Condensate Team focused primarily on the water petal, with an emphasis on the place petal. | The [https://livingbuilding.gatech.edu/ Kendeda Building] has many intricacies making it the sustainable building it is today. Seven "Petals" can describe the overall workings and goals of the Kendeda building, the [http://livingbuilding.gatech.edu/node/320 Place], [https://livingbuilding.gatech.edu/water-petal Water], [http://livingbuilding.gatech.edu/node/323 Energy], [http://livingbuilding.gatech.edu/node/324 Health & Happiness], [http://livingbuilding.gatech.edu/node/325 Materials], [http://livingbuilding.gatech.edu/node/326 Equity], and [http://livingbuilding.gatech.edu/node/327 Beauty] petals. The Condensate Team focused primarily on the water petal, with an emphasis on the place petal. |
Revision as of 09:53, 21 April 2020
Introduction
The Kendeda Building has many intricacies making it the sustainable building it is today. Seven "Petals" can describe the overall workings and goals of the Kendeda building, the Place, Water, Energy, Health & Happiness, Materials, Equity, and Beauty petals. The Condensate Team focused primarily on the water petal, with an emphasis on the place petal.
The Condensate Team sought to learn more about the unique condensate system at the Kendeda Living Building. The research was primarily focused on any possible potential consequences that may arise with the use of condensate water as Kendeda's primary source of irrigation. Principally focusing on testing water for heavy metals and irrigated plants. As well as test for the presence of Legionnaires disease in the condensate tank.
System Specifics
The system being focused on for this research is the condensate system in the Kendeda Building. The purpose of this system is to take in the condensate from the air when it comes in the vents, store it, and then send it back out to be used as irrigation for the various plants around Kendeda. This system is made mainly of stainless steel and HDPE, which was found using the schematics to left. From this, various studies show that there are common metals that leach from steel and these will be used as a basis for the testing in order to see if there is any leaching. The condensate water also sits in a large tank for an extended period of time before being used, especially if it is very humid for multiple days at a time. Because of this there will be tests for the presence of legionella in the irrigation water. This would be an issue, especially since the condensate water will be used to irrigate edible plants in the future.
Analogous Systems
The condensate system in the Kendeda Building for Innovative Sustainable Design is quite useful, particularly in regard to irrigation needs. Condensation irrigation is an upcoming implementable process being utilized around the world.
An example of a long time implemented condensate irrigation system can be that of Hietala Market Gardens in Övertorneå, Sweden. They are a commercial greenhouse which grow vegetables such as cucumbers. A climate controlled condensate system test was implemented in one of the cucumber green houses. This system was no only successful for irrigation but could regulate soil temperatures and advanced the planting date of cucumber crops. This system was in use for approximately twenty years, until removed in 2004.
Many living buildings utilize water reclamation and capture for irrigation in a multitude of ways. Looking at fully living certified buildings as per the International Living Future Institute's website, it seems that scarcely any buildings utilize condensation irrigation in an impactful manner. For example, the Desert Rain living building in Bend, Oregon uses very little water for irrigation whatsoever, and plans to remove irrigation entirely if deemed acceptable. This is accomplished through sparse and native plants calculated to survive on rainwater alone. Some building sites including the Kendeda building utilize drip irrigation (a micro irrigation apparatus used directly above or in the soil of plants), however for water reclamation may utilize capture systems through physical building design or surrounding nature. The Kendeda Living Building is located in the heart of Atlanta, Georgia in the Georgia Institute of Technology. Therefore, implementing surrounding nature as a source of widespread water reclamation is not feasible. Due to the Kendeda buildings unfavorable location in terms of ease and Kendeda's plan to grow native plants as well as create a garden which students can utilize, additional systems need to be utilized to achieve the same objective as other living buildings.
Literature
Cataldo, D. A., & Wildung, R. E. (1978). Soil and plant factors influencing the accumulation of heavy metals by plants. 27, 149-159. doi:10.1289/ehp.7827149
- Discusses various factors that need to be taken into consideration when checking for heavy metal absorption in plants
Dhiman, S. S., Zhao, X., Li, J., Kim, D., Kalia, V. C., Kim, I.-W., . . . Lee, J.-K. (2017). Metal accumulation by sunflower (Helianthus annuus L.) and the efficacy of its biomass in enzymatic saccharification. PLOS ONE, 12(4), e0175845. doi:10.1371/journal.pone.0175845
- Discusses particular sunflower (Helianthus annuus L.) heavy metal accumulation & saccharification efficiency
Loveless, K. J., Farooq, A., & Ghaffour, N. (2013). Collection of Condensate Water: Global Potential and Water Quality Impacts. Water Resources Management, 27(5), 1351-1361. doi:10.1007/s11269-012-0241-8
- Discusses examples of condensate water quality in Saudi Arabia
McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. 31(11-14), 1661-1700. doi:10.1080/0010362000937053
- Outlines current methods for testing for heavy metals in soil
Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & Van Der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407-411. doi:10.1111/nph.14907
- Shows research on a global hyperaccumulator plant database, and gives particular figures for plant genuses and families which are known hyperaccumulators and metals which they are particular inclined to.
Guz, K. Condensate Water Recovery. Ashrae Journal 2005, 54.
- Outlines the success and details of the first condensate systems in San Antonio
Aurell, H., Catala, P., Farge, P., Wallet, F., Le Brun, M., Helbig, J. H., . . . Lebaron, P. (2004). Rapid detection and enumeration of Legionella pneumophila in hot water systems by solid-phase cytometry. Applied and Environmental Microbiology, 70(3), 1651-1657. doi:10.1128/aem.70.3.1651-1657.2004
- Detection of species causing Legionnaires disease through immunofluorescence assays & solid phase cytometry
Aurell, H., Catala, P., Farge, P., Wallet, F., Le Brun, M., Helbig, J. H., . . . Lebaron, P. (2004). Rapid detection and enumeration of Legionella pneumophila in hot water systems by solid-phase cytometry. Applied and Environmental Microbiology, 70(3), 1651-1657. doi:10.1128/aem.70.3.1651-1657.2004
- Developed an onsite quantitative PCR method to detect & quantify Legionella in HVAC systems
Bassioni, G., Korin, A., & Salama, A. E. D. (2015). Stainless Steel as a Source of Potential Hazard due to Metal Leaching into Beverages. International Journal of Electrochemical Science, 10(5), 3792-3802. Retrieved from <Go to ISI>://WOS:000354782200009
- Analyzed heavy metal leached from stainless steel from different beverages - mostly nickel, chromium & iron
Skaliy, P. (1979). Survival of the Legionnaires Disease Bacterium in Water. Annals of Internal Medicine, 90(4), 662. doi: 10.7326/0003-4819-90-4-6
- Describes how long Legionnaires disease bacterium is able to survive in water
Wang, W. L. L. (1979). The Microorganism. Annals of Internal Medicine, 90(4), 614. doi: 10.7326/0003-4819-90-4-614
- A more in depth look at Legionnaires disease bacterium
Hewitt, A. D. (1989). Leaching of metal pollutants from four well casings used for ground-water monitoring (No. CRREL-SR-89-32). COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH.
- Analyzes tests done on four well-casings made of various materials (polytetrafluorethylene(PTFE) , polyvinylchlorine(PVC) , and two types of stainless steel). Shows that the stainless steel cases were low-level sources for Cadmium(Cd) and sorption sites for Arsenic(As), Chromium(Cr), and Lead(Pb).
Wu, Y., Chen, A. L., Luhung, I., Gall, E. T., Cao, Q. L., Chang, V. W. C., & Nazaroff, W. W. (2016). Bioaerosol deposition on an air-conditioning cooling coil. Atmospheric Environment, 144, 257-265. doi:10.1016/j.atmosenv.2016.09.004
- Discusses benefits & drawbacks of particular AC cooling coils in terms of a microbial sense
Pepper, I. L., & Gerba, C. P. (2018). Risk of infection from Legionella associated with spray irrigation of reclaimed water. Water Research, 139, 101-107. doi:10.1016/j.watres.2018.04.001
- Assess & proposes a possible risk assessment for likelihood of Legionella pneumophila in reclaimed water
Piso, R.j., et al. “Hose as a Source of Legionella Pneumonia. A New Risk Factor for Gardeners?” Journal of Hospital Infection, vol. 67, no. 4, 2007, pp. 396–397., doi:10.1016/j.jhin.2007.09.008.
- Discusses likelihood of the transfer of legionella disease from water to plants and risk factors associated.
Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 30(10-11), 1389-1414. doi:10.1016/s0038-0717(97)00270-8
- Discusses particular sensitivity of microorganisms and precise loss of function of particular organisms under specific scenarios, both short term & long term
Valero, F. P., Villanueva, S. C., & Lleonart, A. P. (2007). Study of refrigeration towers associated with community outbreaks of legionellosis. Gaceta Sanitaria, 21(4), 357-360. Retrieved from <Go to ISI>://WOS:000253953700017
- Evaluates factors & risks of cooling towers in terms of risk of legionnaires disease community spread & outbreaks