From Living Building Science


The purpose of this subteam is to monitor and analyze biodiversity around the Kendeda building and observe different factors that affect wildlife on campus.

For the Fall 2020 semester, we have chosen to focus our efforts on birds. Through bird collision monitoring as well as AudioMoth data, we planned at looking at the current status of the bird population at Tech as well as the different factors affecting it.

Bird Collision Monitoring

Birds are an important element of their respective environments. In addition to the intrinsic significance as well as the cultural value that birds possess, they play a vital role in regenerating habitats by pollinating plants and dispersing seeds. Birds control insect and rodent populations, reducing damage to crops and limiting the transmission of diseases. Unfortunately, there collision with windows poses a great threat to these birds. One-third of all bird species in the United States fall victims to bird collisions. It is the second greatest source of mortality due to human action behind domestic cats. If no action is taken to prevent bird collisions, this will result in a significant decrease in bird populations that will ultimately negatively impact the surrounding community as a whole. As part of Kendeda’s effort to be eco and wildlife-friendly, it makes use of bird-safe glass to help undermine this issue. One third of Kendeda’s windows are bird-safe, and that is predominately at the west side of the building, as opposed to the east side’s windows being non bird-safe. Knowing this, we wanted to see if these bird-safe windows were actually as effective as they claim to be. As such, we wanted to answer the question: “How effective are Kendeda’s bird-safe windows at preventing bird collisions as compared to non bird-safe windows at Kendeda and other buildings on campus?”


Every weekday around 6:45-7AM beginning 10/5/2020 and ending 11/17/2020, we searched the area around the Kendeda, ISYE, and Price Gilbert buildings for any dead or injured birds. It is important to search up to 30 feet from the building and in any plants, as injured birds may take shelter there. Any birds found are photographed and logged in our iNaturalist project (titled "Bird Collisions GT VIP") and on the Georgia Audubon bird collision map. If any injured birds are found, we would contact Adam Betuel who will arrange transportation to a rehab facility. Birds that we find are also stored in a freezer until they can later be deliver to Adam Betuel.

We got in contact with facilities to get their assistance with recording bird collisions, since they would be able to observe occurrences that we might have missed, picked up before we got to the scene, or happened at times outside our monitoring period. Facilities agreed to notify us of such events by email and were continuously doing so throughout the semester. Their notifications would include a picture of the bird collision, its location, the time that the collision occurred at, and sometimes the species if they were able to identify it.

In addition to our own recordings of the bird strikes, we were also given access to the Georgia Audubon Map of bird collisions around the Georgia Tech campus to add our observations in. We used the map for both recording collisions as well as analyzing previous collisions to get a more accurate representation of bird strikes around campus.

We created an iNaturalist project to maintain our observations in. For each observation, we included the time, place, and species of bird along with a picture of the dead bird. We also created a pamphlet that included information about bird collisions and our own project. We called on readers to help out by sending any bird strike they encounter to our email or uploading it directly to our iNaturalist project. We shared the pamphlet with several organizations, and we received replies from Tech4Wildlife and HumaniTech saying they would pass it along to their members. BBUGS also included our message in their weekly newsletter.


Conclusion and Future Research

As no collisions have been observed on the side of Kendeda with the bird safe windows, we can conclude that these windows are effective at preventing bird collisions. Furthermore, they prove to be a good alternative to the traditional windows across campus. In future semesters, the team can continue to monitor bird collisions on campus. However, figuring out where bird collisions occur and why they occur is only a beginning step. Different methods of reducing and preventing bird collisions can be studied and tested. The team can continue to spread awareness about bird strikes, promote the team, and inform people about ways they can help reduce occurrences of bird strikes. Additionally, the team can expand their focus to other wildlife topics and biodiversity projects on campus. We plan to continue with our analysis of the AudioMoth data as well as explore other fields such as the ones mentioned below.

Team Members

Name Major Years Active
Ghaith Al Tibi Biology Fall 2020 - Present
Bailey Abel Biology Fall 2020 - Present
Sara Delawalla Earth and Atmospheric Sciences Fall 2020 - Present
Zyra Shahbazi Biology Fall 2020 - Present